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Effective dispersion in temporally fluctuating flow through a heterogeneous medium

Marco Dentz* and Jesus Carrera†

Department of Geotechnical Engineering and Geosciences, Technical University of Catalonia (UPC), Barcelona, Spain
~Received 3 June 2003; published 19 September 2003!

In this paper we investigate the effective transport of a passive solute in temporally fluctuating flow through
a spatially heterogeneous medium. The Darcy equation for an incompressible fluid in the heterogeneous
medium is solved with temporally fluctuating boundary conditions using perturbation theory. We distinguish
between a spatial random process reflecting the medium heterogeneities and a temporal random process which
models the fluctuations of the boundary conditions. By appropriately averaging over the corresponding random
fields, we evaluate the second-order perturbation approximation to the time evolution of the ‘‘effective’’ and
‘‘ensemble’’ dispersion coefficients. Both quantities consist of three terms reflecting:~1! local dispersion;~2!
dispersion caused by spatial heterogeneities~identical to the corresponding dispersion in steady random flow!;
~3! dispersion linked to the enhanced solute spreading caused by the interactions between temporal fluctua-
tions, local dispersion, and spatial heterogeneity. The behavior of this latter contribution is complex due to the
interplay of three different time scales~set by fluctuating boundary conditions, local dispersion, and advection!.
Temporal fluctuations of the velocity field lead to effective transverse dispersion coefficients that evolve in
time to macroscopic values~i.e., independent of the local dispersion!, which is consistent with observations in
the field but was not predicted by theories based on steady flow. Due to their perturbative nature, the derived
results are intrinsically limited to moderately fluctuating random velocity fields. However, numerical transport
simulations indicate a wide range of applicability. The reported results support remediation techniques that
attempt to enhance the mixing of injected reactants with contaminated ground water by temporal variations of
injection and pumping rates.

DOI: 10.1103/PhysRevE.68.036310 PACS number~s!: 47.55.Mh, 05.60.2k, 92.40.Kf, 02.50.Ey
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I. INTRODUCTION

We investigate the transport behavior of a passive so
in an incompressible temporally fluctuating velocity fie
through a heterogeneous porous medium in a stocha
modeling framework. The study is motivated by the applic
tion to contaminant movement in saturated ground wa
aquifers, where the flow always fluctuates spatially and te
porally.

It is well known that medium heterogeneities on a loc
scale have an important impact on the effective large s
behavior of solute transport. The dominant influence of m
dium heterogeneities has been studied extensively during
last two decades within a stochastic framework, e.g., R
@1–3#. Here we investigate the effective large scale transp
behavior due to the interplay between spatial heterogene
of the porous medium, local dispersion and time fluctuatio
of the flow field, as observed in realistic subsurface flow
e.g., Refs.@4–6#.

The stochastic analysis of transport in steady hetero
neous ground water flow describes well the longitudinal~in
direction of the mean flow! effective spreading of solute
found on the field scale while the effective transverse spre
ing is underestimated by theoretical findings by at least
order of magnitude, e.g., Ref.@2#. One objective of this study
is to systematically investigate the influence of tempo
variations of the flow velocity on the transverse spreading
a typical realization of the heterogeneous medium. It w
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shown by Rehfeldt and Gelhar@5# that temporal fluctuations
of the flow through a heterogeneous medium represent a
sible source of macroscopic transverse spreading. Ack
and Kinzelbach@7# noticed the importance of temporal fluc
tuations of ground water flow on the large scale transp
behavior and analyzed the influence of temporally fluctuat
flow in a homogeneous porous medium by random w
simulations. A similar flow and transport model has be
investigated in Ref.@8#. Transport in a time-periodical het
erogeneous flow field has been investigated in Ref.@9# using
an effective transport framework. Exact averaging of the s
chastic transport equations for time-dependent flow in a
mogeneous medium was investigated in Ref.@10#. Effective
macrodispersion coefficients in transient ground water fl
are considered in Ref.@11#.

The transport of a passive scalar in time-dependent
steady random flow fields has been frequently addresse
the physics literature in the context of turbulent diffusion a
for the study of random walks in random environments, e
Refs. @12–23#. However, application to flow and solut
transport in the subsurface displays two important featu
that have to be taken into account. First, the velocity field
derived from the continuity equation and Darcy’s law@24#
~contrary to the more frequent derivation of the incompre
ible velocity field from a general Gauss distributed vec
potential, e.g., Refs.@16,20,21#!. Second, in contrast to man
models investigating transport in turbulent flow or stea
random flow, e.g., Refs.@15,16,19–22#, which assume a zero
mean velocity, the mean flow is necessarily non-zero, wh
leads to qualitatively and quantitatively different transp
behavior, e.g., Refs.@12,23#. Diffusion in biased random ve
locity fields @23,25,26# finds application also, e.g., in plasm
©2003 The American Physical Society10-1
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M. DENTZ AND J. CARRERA PHYSICAL REVIEW E68, 036310 ~2003!
turbulence, meteorology, or oceanography@27–29#.
Neglecting compressibility is a good approximation f

flow in the subsurface because the compressibility ti
scales tend to be much smaller than the time scales of
tuations, e.g., Ref.@5#. The flow equation is then derive
from the Darcy equation by applying the incompressibil
condition for the fluid. In the approach used here, the fl
field is given by the linearized solution of this flow equatio
@2,5# for time-fluctuating boundary conditions for the h
draulic head~pressure!. The time fluctuations are not errat
and can be characterized by a short range correlation f
tion @5# with a finite correlation time.

The objective of this work is to quantify the influence
space and time fluctuations of flow through a heterogene
medium on the effective transport behavior of a contamin
by studying the effective center of mass velocity and eff
tive dispersion coefficients, which are defined in one reali
tion of the random medium by

ui
R~ t !5

d

dt
mi

(1)~ t !, ~1!

Di j
R~ t !5

1

2

d

dt
$mi j

(2)~ t !2mi
(1)~ t !mj

(1)~ t !%, ~2!

respectively, where the first and second moments of
concentration distribution are defined bymi

(1)(t)
[*ddxxic(x,t) andmi j

(2)(t)[*ddxxixjc(x,t).
In a stochastic model these observables are define

averages over all typical realizations of the stochastic p
cesses under consideration. It is essential to consider ap
priately defined averages in order to assure that the ch
observables characterize the spreading of the solute in a
cal realization rather than the spreading properties of the
sembles under consideration: The observables should be
averaging. This important issue has been recognized for
transport in turbulent flow fields@30,31# as well as for the
transport in time-independent random flow fields@32#. The
importance of an appropriate choice of dispersion coe
cients for the correct representation of reactive transport
been addressed recently@33,34#.

In this context, one distinguishes between the ‘‘effe
tive’’ and ‘‘ensemble’’ dispersion coefficients, e.g., Ref
@32,35–37#, for transport in steady random flow fields. Th
effective dispersion coefficient is defined by the average
Eq. ~2! over all typical realizations of the~spatial! random
process and is a measure of spreading in any typical rea
tion of the medium. As such, it reflects the actual spread
of the solute. The ensemble dispersion coefficient, in c
trast, is derived from the ensemble averaged concentra
distribution and reflects the dispersion properties of the
semble of all realizations. As such, it reflects not only t
solute spreading but also the uncertainty in the displacem
of the center of mass of the solute distribution, which rep
sents an additional~artificial! spreading effect. The differ
ence between the effective and ensemble dispersion co
cients has been discussed quantitatively in Re
@35,36,38,39# for the disorder-induced contributions due to
time-independent random flow field. These two dispers
03631
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coefficients converge to the same asymptotic value for tim
that are large compared to the dispersion time scaletD
5 l 2/D, which measures the time for the dispersive transp
of the solute over one correlation length scale of the med
by local dispersionD. The effective dispersion coefficien
evolves on the dispersion time scaletD while the time evo-
lution of the ensemble dispersion coefficient is dominated
the advection time scaletu5 l /u, which measures the time
for advective transport by the mean velocityu over a typical
~correlation! length scalel of the medium. For realistic aqui
fer situations the advection and dispersion time scales
well separated,tu!tD @2#.

For the time-dependent random flow field under consid
ation here we deal with a spatial and a temporal rand
process, which represent the spatial fluctuations of the
erogeneous medium and the time fluctuations of the fl
boundary conditions, respectively. This causes a third t
scale~namely, the correlation time of temporal fluctuation
t) to arise. The magnitude of this scale is compared to
advection time scale by means of the Kubo number@23#,
defined ask[t/tu .

A straightforward generalization of the concepts dev
oped for steady state flow fields leads to an effective disp
sion coefficientDi j

eff , which is defined as the average of th
dispersion coefficient~2! in a typical realization, over both
the spatial and temporal ensembles. As for transport i
steady random flow field, this quantity characterizes
spreading in a typical realization of the spatial and tempo
random ensembles. Furthermore, in analogy to transpo
steady random flow, we define an ‘‘ensemble’’ dispersi
coefficientDi j

ens as the time ensemble average over the d
persion coefficient derived from the space ensemble a
aged concentration distribution. These observables are in
tigated using a second-order perturbation expansion in
variance of the random flow field. As such the presen
results are intrinsically limited to moderately fluctuating ra
dom velocities. As it turns out, the so defined effective a
ensemble dispersion coefficients converge for times that
large compared totD .

II. BASICS

A. Local scale transport description

Transport of a passive solute in the nonsteady, nonu
form flow through a heterogeneous medium can be descr
at a mesoscopic~local! scale by, e.g., Ref.@5#:

]

]t
c~x,t !1u~x,t !•“c~x,t !2“D“c~x,t !5d~x!d~ t !.

~3!

The solute concentration is denoted byc(x,t); u(x,t) andD
are the incompressible local flow velocity and the~constant!
dispersion tensor, respectively. The local dispersion tenso
the following is assumed to be diagonal,Di j 5Dii d i j . As
boundary conditions we assume a vanishingc(x,t) at the
boundaries at infinity. The initial condition for the concentr
tion distributionc(x,t), represented by the right side of E
~3!, is given by c(x,t50)5d(x). This transport problem
will be dealt with in a stochastic modeling framework usin
0-2
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EFFECTIVE DISPERSION IN TEMPORALLY . . . PHYSICAL REVIEW E68, 036310 ~2003!
a perturbation expansion ofc(x,t) in terms of the fluctua-
tions of the random fieldu(x,t).

For the following derivations, it is convenient to perfor
a spatial Fourier transform. The spatial Fourier transfo
here is defined by:

c̃~k,t !5E ddx exp~ ik•x!c~x,t !,

c~x,t !5E
k
exp~2 ik•x!c̃~k,t !, ~4!

where we use the shorthand notation*k•••

[*ddk/(2p)d
•••. Fourier transformed quantities here a

in the following are denoted by a tilde.

B. Stochastic model and ensemble average

We consider the heterogeneous medium as one realiza
of a spatial random process, the fluctuations of the hydra
head at the boundaries of the flow domain are modeled
one realization of a temporal random process. The inco
pressible flow field, which is approximated by the lineariz
solution of the Darcy equation, see Appendix A, can then
decomposed into

ui~x,t !5ui~ t !2@ui8~x!1ui8~x,t !#, ~5!

where the different contributions are defined by, see Ref.@5#
and Appendix A,

ui~ t !5u@d i12n i~ t !#, ~6!

ui8~x!5uE
k
exp~2 ik•x!pi1~k! f̃ 8~k!, ~7!

ui8~x,t !52uE
k
exp~2 ik•x!n l~ t !pil ~k! f̃ 8~k!, ~8!

where we sum over repeated indices, and thepil (k)[d i l
2kikl /k2. The stationary random fieldn(t) quantifies the
normalized time fluctuations of the spatial mean hydrau
~pressure! gradient. The time average is zero by definiti
^n(t)&50. The stationary random fieldf 8(x) quantifies the
spatial fluctuations of the log-hydraulic conductivity and h
zero mean as well,f 8(x)50. Here and in the following, the
ensemble average over all realizations of the temporal
dom process is denoted by the angular brackets, the ave
over all realizations of the random medium is denoted by
overbar. Without loss of generality the ensemble mean ve
ity ^u(x,t)&5u is assumed to be aligned with the on
direction of the coordinate system,ui5d i1u. The spatial
mean velocity is given by Eq.~6!, u(x,t)5u(t), and in gen-
eral varies in magnitude and direction with time. Owing
the stationarity of the random fieldsn(t) and f 8(x), the re-
spective correlation functions read as

^n l~ t !nm~ t8!&5Clm
nn~ t2t8!, ~9!
03631
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i.e., depend only on the differences (t2t8) and (x2x8). The
correlation functionsClm

nn(t) andCf f(x) here are assumed t
be short range, i.e., to decrease sharply for times larger
the correlation timet and for distances larger than the co
relation lengthsl i , i 51, . . . ,d, respectively. These defini
tions allow us to write the velocity autocorrelation functio
as:

ui8~x!uj8~x8!5u2E
k
exp@2 ik•~x2x8!#pi1~k!pj 1~k!C̃f f~k!,

~11!

^ui8~x,t !uj8~x8,t8!&5u2E
k
exp@2 ik•~x2x8!#

3Clm
nn~ t2t8!pil ~k!pjm~k!C̃f f~k!,

~12!

where we sum over identical indices,i , j 51, . . . ,d.
For the stochastic analysis of transport in an inco

pressible turbulent flow field or transport in ‘‘frozen
turbulence one usually derives the velocity from
Gauss distributed random vector potentialA(x,t), e.g.,
Refs.@12,15–17,20,21,23# and does not distinguish betwee
a temporal and a spatial random process,

u~x,t !5“3A~x,t !. ~13!

The structure of this flow field is different from the one d
rived for the flow through a heterogeneous medium in A
pendix A. The autocorrelation function of the velocity flu
tuationsu8(x,t)5u(x,t)2u(x,t) for the flow model~13! is
given by

ui8~x,t !uj8~x8,t8!5E
k
exp@2 ik•~x2x8!#

3S d i j 2
kikj

k2 D C̃uu~k,t2t8! ~14!

with the autocorrelation spectrumC̃uu(k,t2t8). The overbar
here denotes the average over all realizations of the ran
potentialA(x,t). In this paper, we investigate instead tran
port in the flow model defined by Eqs.~5! to ~12!.

C. Observables

As the simplest characteristics for the spatial evolution
the solute, we consider the center of mass velocity and
macroscopic dispersion coefficients of the solute distributi
These are derived from the first and second moments of
concentration distribution,

mi
(1)~ t !5E ddxxic~x,t !52 i

]

]ki
c̃~k,t !uk50 , ~15!
0-3
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M. DENTZ AND J. CARRERA PHYSICAL REVIEW E68, 036310 ~2003!
mi j
(2)~ t !5E ddxxixjc~x,t !52

]2

]ki]kj
c̃~k,t !uk50 , ~16!

where the second equalities in Eqs.~15! and ~16!, respec-
tively, follow from definition ~4! of the Fourier transform.
The dispersion coefficients in one realization of the medi
are derived from the second centered momentsk i j

(2) of the
concentration distribution, which are defined by

k i j
(2)~ t !5mi j

(2)~ t !2mi
(1)~ t !mj

(1)~ t !

52
]2

]ki]kj
ln$c̃~k,t !%uk50 . ~17!

In the stochastic modeling framework, the observables
defined as averages over all realizations of the spatial
temporal random processes. For transport of a solute
steady random velocity field, there are two different aver
ing procedures which lead to the definition of the effect
and ensemble dispersion coefficients@32#. We adopt these
definitions here for transport in a nonsteady heterogen
flow field. However, note that the order of the averages o
the temporal and spatial ensembles gives rise to the de
tion of four conceptually different dispersion quantities. R
call that the ensemble average over the spatial ensemb
denoted by an overbar, the average over the temporal
semble is denoted by angular brackets.

We define the effective dispersion coefficient by the tim
and space ensemble average of the dispersion coefficien~2!
in one typical realization of the two random processes:

Di j
eff~ t !5

1

2

d

dt
^mi j

(2)~ t !2mi
(1)~ t !mj

(1)~ t !&

52
1

2

d

dt

]2

]ki]kj
^ ln$c̃~k,t !%&uk50 . ~18!

A meaningful ensemble dispersion coefficient is defined
the time average of the spatial ensemble dispersion co
cient in one typical realization of the time random proce
i.e., the time average of the dispersion coefficient, which
derived from the space ensemble averaged concentration
tribution:

Di j
ens~ t !5

1

2

d

dt
^mi j

(2)~ t !2mi
(1)~ t ! mj

(1)~ t !&

52
1

2

d

dt

]2

]ki]kj
^ ln$c̃~k,t !%&uk50 . ~19!

Note that we did not straightforwardly generalize the co
cepts for steady random flow to transient random flow, as
ensemble dispersion coefficients for steady random flow
derived from the ensemble averaged concentration distr
tion. From the space and time ensemble averaged conce
tion distribution one derives the following alternative dispe
sion quantity:
03631
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Di j
(1)~ t !5

1

2

d

dt
$^mi j

(2)~ t !&2^mi
(1)~ t !&^mj

(1)~ t !&%

52
1

2

d

dt

]2

]ki]kj
ln$^c̃~k,t !&%uk50 , ~20!

which is investigated in Ref.@5#. For completeness we
present another average dispersion coefficient, which is
fined by the space ensemble average over the dispersion
efficients derived from the time ensemble averaged conc
tration distribution:

Di j
(2)~ t !5

1

2

d

dt
$^mi j

(2)~ t !&2^mi
(1)~ t !&^mj

(1)~ t !&%

52
1

2

d

dt

]2

]ki]kj
ln$^c̃~k,t !&%uk50 . ~21!

In the following we will critically discuss definitions~18!–
~21! for the case of transport in the time-dependent fl
through a homogeneous medium, i.e., in a time varying s
tially constant flow field.

D. Transport in a time-dependent flow field through
a homogeneous medium

In order to illustrate and evaluate the different definitio
for the ensemble averaged dispersion coefficients~18!–~21!
we consider the exactly solvable case of transport of a so
in the time-dependent flowu(t) through a homogeneous po
rous medium in the framework of a stochastic model. W
consider the fluctuating velocity fieldu(t) as one realization
of a stationary stochastic process$u(t)%, characterized by its
mean value ^u(t)& and the autocorrelation functio
^ui8(t)uj8(t8)&5Ci j

uu(t2t8), where we definedu(t)[^u(t)&
2u8(t). In this case quantities~18! and ~19! are equal, and
Eqs. ~20! and ~21!, because the respective definitions diff
only in the way the spatial average is taken. The transp
equation~3! in this case reduces to

]

]t
c~x,t !1u~ t !•“c~x,t !2“D“c~x,t !5d~x!d~ t !.

~22!

The exact solution of Eq.~22! for the concentration of a
solute evolving from a pointlike injection atx50 in one
realization ofu(t) can be easily derived by a spatial Fouri
transform of Eq.~22!. We obtain

c~x,t !5E
k
exp~2 ik•x!c̃~k,t !

5E
k
exp~2 ik•x!expS 2kDk t1 ik•E

0

t

dt8u~ t8! D .

~23!

The center of mass velocity and the dispersion coefficie
derived from the concentration distribution~23! are given by
u(t) and the local dispersion coefficientsDii , respectively.
0-4
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The ensemble and effective dispersion coefficientsDi j
eff and

Di j
ens, Eqs.~18! and ~19!, respectively, are derived from th

time average of the dispersion coefficients in one realiza
of u(t) and, accordingly, are given by the local dispersi
coefficients,

Di j
eff~ t !5Di j

ens~ t !52
1

2

d

dt

]2

]ki]kj
^ ln$c̃~k,t !%&uk50

5^Di j &5Di j . ~24!

The dispersion coefficients defined by Eqs.~20! and ~21!
in contrast are derived from the ensemble averaged con
tration distribution. We assumeu(t) to be a Gaussian random
field for simplicity. In this case it is possible to perform th
ensemble average of Eq.~23! and give an explicit expressio
for ^c(x,t)&. Averaging Eq.~23! over the Gaussian random
field u(t), we obtain

^c~x,t !&5E
k
exp~2 ik ixi !expS 2ki H Di j t1E

0

t

dt8

3E
0

t8
dt9Ci j

uu~ t82t9!J kj1 ik iE
0

t

dt8^ui~ t8!& D ,

~25!

where we sum over identical indices. Thus, forDi j
(1) andDi j

(2)

we obtain

Di j
(1)~ t !5Di j

(2)~ t !52
1

2

d

dt

]2

]ki]kj
ln$^c̃~k,t !&%uk50

5Di j 1E
0

t

dt8Ci j
uu~ t8!. ~26!

Using Eqs.~6! and ~9! for the temporally fluctuating flow
field ~in this caseCi j

uu[u2Ci j
nn), we obtain for Eq.~26! in the

limit t→`,

lim
t→`

Di j
(1)~ t !5Di j 1u2s i j

2 t i j , ~27!

wheres i j
2 is the variance of the time fluctuations ofu(t) and

t i j is the correlation time@t i j [*0
`dtCi j

nn(t)/s i j
2 #. Expression

~27! is identical to the result derived in Ref.@5# for the mac-
rodispersivity in a time-fluctuating flow field and was ide
tified as the leading disorder contribution due to a tempor
fluctuating flow field. However, as we see by comparison
the dispersion coefficients in one single realization of
random flow fieldu(t), this contribution does not characte
ize the true effective spreading of the solute plume in o
realization of the medium. Thus, the dispersion coefficie
defined by Eqs.~21! and~20! are not self-averaging observ
ables. They do not represent dynamic quantities which c
acterize the effective large scale transport behavior but ra
serve as an uncertainty estimate for the concentration
time-fluctuating flow fields. Thus, also the time ensem
averaged concentration distribution~25!, which has been
considered in Ref.@10# is not representative for the conce
03631
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cess. In the following, we will focus on the analysis ofDi j

eff

andDi j
ens defined by Eqs.~18! and ~19!, respectively.

E. Integral equation and perturbation series

Now we will derive an integral equation for the conce
tration distributionc(x,t) using decomposition~5! of the
random velocity field into the constant mean value and fl
tuations about it. The transport equation~3! can be rewritten
as

]

]t
c~x,t !1u~ t !•“c~x,t !2“D“c~x,t !

5@u8~x!1u8~x,t !#•“c~x,t !. ~28!

For technical convenience we perform a spatial Fou
transform~4!. Equation~28! reads in Fourier space

]

]t
c̃~k,t !2$ ik•u~ t !2kDk %c̃~k,t !

52E
k8

ik•@ ũ8~k8!1ũ8~k8,t !# c̃~k2k8,t !. ~29!

The transport equation~29! can be transformed into a
equivalent integral equation:

c̃~k,t !5 c̃0~k,t !2E
k8
E

0

t

dt8c̃0~k,t2t8!ik•@ ũ8~k8!

1ũ8~k8,t8!# c̃~k2k8,t8!. ~30!

The propagatorc̃0(k,t) is given by

c̃0~k,t !5expH 2kDk t1 ik•E
0

t

dt8u~ t8!J , ~31!

i.e., we expand about the solution of Eq.~28! for u8(x)
[0. Equation~30! is the starting point for the perturbativ
solution of the transport problem.

By iteration of the integral equation~30!, we obtain the
perturbation series:

c̃~k,t !5 c̃0~k,t !2E
k8
E

0

t

dt8c̃0~k,t2t8!ik•@ ũ8~k8!

1ũ8~k8,t8!# c̃0~k2k8,t8!

1E
k8
E

k9
E

0

t

dt8E
0

t8
dt9c̃0~k,t2t8!ik•@ ũ8~k8!

1ũ8~k8,t8!# c̃0~k2k8,t82t9!i ~k2k8!•@ ũ8~k9!

1ũ8~k9,t9!# c̃0~k2k82k9,t9!1•••. ~32!

This perturbation series forc̃(k,t), truncated after the secon
order in ũ8, is the basis for the following perturbativ
analysis.
0-5
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M. DENTZ AND J. CARRERA PHYSICAL REVIEW E68, 036310 ~2003!
In the following we focus on the contributions to the e
semble and effective dispersion coefficients due to temp
and spatial fluctuations of the velocity field. The ensem
averaged center of mass velocity is given by the ensem
mean flow velocityu,

ui
cm~ t !5

d

dt
^mi

(1)~ t !&5ud i1 . ~33!

This can be easily seen by inserting Eq.~32! into Eq. ~15!
and averaging the resulting expression. The effective and
semble dispersion coefficients are obtained by substitu
Eq. ~32! into Eqs.~18! and~19!, respectively. Expanding th
resulting expression consistently up to second order inu8
leads to

Di j
eff~ t !5Dii 1d (s)$Di j

eff%~ t !1d (t)$Di j
eff%~ t !, ~34!

Di j
ens~ t !5Dii 1d (s)$Di j

ens%~ t !1d (t)$Di j
ens%~ t !, ~35!

where d (s)$Di j
eff%(t) and d (s)$Di j

ens%(t) denote the second
order contributions to the effective and ensemble dispers
coefficients, respectively, due to a time-independent het
geneous flow field. They are well known. The asympto
limit of d (s)$Dii

ens%(t) has been determined in Ref.@2#. The
time evolution of both quantities has been determined
Refs.@36,38,39# for d52 andd53 spatial dimensions. The
contributions due to temporal and spatial fluctuations
given by

d (t)$Di j
ens%~ t !

5E
k
E

0

t

dt8g̃0~k,t8!Clm
nn~ t8!pil ~k!pjm~k!C̃f f~k!,

~36!

d (t)$Di j
eff%~ t !5d (t)$Di j

ens%~ t !2E
k
E

0

t

dt8g̃0~2k,t !g̃0~k,t8!

3Clm
nn~ t2t8!pil ~k!pjm~k!C̃f f~k!, ~37!

where the propagatorg̃0(k,t) is defined by the ensembl
mean velocity equivalent of Eq.~31!,

g̃0~k,t ![exp~2kDk t1 iuk1t !. ~38!

We disregard contributions to Eq.~31! of ordern for consis-
tency.

The effective and ensemble dispersion coefficients~18!
and ~19! do not have contributions due to temporal fluctu
tions only. Apparently the contributions to the effectiv
transport behavior of a solute result from the interplay
spatial and temporal fluctuations as a consequence of
assumption of constant local dispersion~Refs.@7,8#!.

Using Eq. ~38! for g̃0(k,t) in Eqs. ~36! and ~37!, we
obtain

d (t)$Di j
ens%~ t !5ul1Mi j

1~ t,A!u(Al51,l 51, . . . ,d) , ~39!
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d (t)$Di j
eff%~ t !5ul1@Mi j

1~ t,A!u(Al51,l 51, . . . ,d)

2Mi j
2~ t,A!u(Al5114t/tDl

,l 51, . . . ,d)#. ~40!

The auxiliary functionsMi j (t,A) are defined by

Mi j
6~ t,A!5~2p!d/2E

k
E

0

t/t u
dt8expS 2

kl
2

2
~Al62e l t821!

1 ik1t8DClm
nn~ t8tu!C̃f f* ~k!pil* ~k!pjm* ~k!, ~41!

where we sum over repeated indices. We defined here
vectorA in order to unify the notation. WhenM 6 is used in
the expression ford (t)$Di j

ens%, the coefficients ofA are given
by Al51. When used in the expression ford (t)$Di j

eff%,
they are given by Al5114t/tDl

. For compactness

we defined C̃f f* (k)[C̃f f(k1 / l 1 , . . . ,kd / l d) and pi j* (k)
[pi j (k1 / l 1 , . . . ,kd / l d). We defined the advection tim
scaletu[ l 1 /u which measures the time for the advecti
transport of the solute over one correlation length of the m
dium. Furthermore, we defined the dispersion time sca
tDl

[ l l
2/Dll , l 51, . . . ,d, which characterize the time fo

dispersive solute transport over the respective correla
length @36#. The e l[tu /tDl

5Dll l 1 /(ull
2), l 51, . . . ,d, de-

note the inverse Peclet numbers which for realistic aqu
situations are much smaller than 1,e l!1 @2#. The nondimen-
sional Kubo numberk[ut/ l 1 @23# characterizes transport i
time-dependent heterogeneous flow fields. It compares
distancel k[ut ~‘‘Kubo distance’’! the solute is advected b
the mean flow during the correlation timet to the correlation
length in mean flow directionl 1 , k5 l k / l 1; it equivalently
compares the correlation timet to the advection time scale
tu , k5t/tu .

III. CONTRIBUTIONS TO THE
DISPERSION COEFFICIENTS

For simplicity, in the following we investigate a scenar
in which the direction of the spatial mean velocityu(t), Eq.
~6!, does not vary in time, i.e.,

n i~ t ![d i1n~ t !. ~42!

Note, however, that, as implied by Eq.~8!, time fluctuations
of the spatial mean velocity in the one direction drive te
poral fluctuations of the transverse velocity components. T
time behavior of the contributions due to random variatio
of the direction ofu(t) is similar to the time behavior tha
will be presented in the following for assumption~42!.

Using Eq. ~42!, the correlation matrix~9! reduces to
Clm

nn(t)[d l1dm1Cnn(t). Inserting this expression into Eqs
~36! and~37!, we obtain the following simplified expression
for the contributions to the effective and ensemble dispers
coefficients:
0-6
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EFFECTIVE DISPERSION IN TEMPORALLY . . . PHYSICAL REVIEW E68, 036310 ~2003!
d (t)$Dii
ens%~ t !5E

0

t

dt8Cnn~ t8!
d

dt8
d (s)$Dii

ens%~ t8!, ~43!

d (t)$Dii
eff%~ t !5d (t)$Dii

ens%~ t !2E
k
E

0

t

dt8g̃0~2k,t !g̃0~k,t8!

3pi1~k!2C̃f f~k!Cnn~ t2t8!, ~44!

where the nondiagonal coefficients vanish because of s
metry. Time fluctuations of the direction ofu(t) may induce
nonvanishing contributions to the off-diagonal dispersion
efficients.

The correlation functionCnn(t) decays sharply for times
large compared to the correlation time scalet and thus has
the effect of a cutoff for the time integrations in expressio
~43! and~44!. In the following we employ a Gaussian shap
time correlation function,

Cnn~ t !5snn
2 expS 2

t2

2t2D , ~45!

wheresnn
2 denotes the variance of time fluctuations.

Furthermore, we also assume a Gaussian shaped co
tion function for the fluctuations of the log-hydraulic co
ductivity,

Cf f~x!5s f f
2 )

i 51

d

exp@2xi
2/~2l i

2!#, ~46!

wheres f f
2 denotes the variance of the spatial fluctuations;

l i are the correlation lengths ini direction. The autocorrela
tion spectrumC̃f f(k) of the log-hydraulic conductivityf (x)
then is given by

C̃f f~k!5s f f
2 )

i 51

d

~2p l i
2!1/2exp~2ki

2l i
2/2!. ~47!

In the following, we will focus on isotropic disorder sce
narios, i.e.,l 15•••5 l d .

Using Eq.~42! and inserting Eqs.~45! and ~47! into Eq.
~41!, we obtain for the auxiliary functionsMii

6(t,A):

Mii
6~ t,A!5~2p!d/2snn

2 s f f
2 E

k
E

0

t/tu
dt8expS 2

kl
2

2
~Al62e l t8!

1 ik1t8DexpS 2
t82

2~t/tu!2D pi1* ~k!2, ~48!

where we sum over repeated indices (l ).
In Appendix B 2 we give integral expressions for th

Mii (t,A) for d53 andd52 spatial dimensions, which ar
evaluated numerically in order to investigate the compl
time behavior of the lowest-order contribution due to a te
porally and spatially fluctuating flow field. Furthermore, w
give approximate analytical expressions in Appendix B
for Eq. ~48! applying the approximation fore l!1 and
t@tu presented in Ref.@36#. Explicit expressions for Eq
03631
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e
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a

~48! in d52 dimensions for the limiting case ofD115D22
50 are given in Appendix B 2 b.

In the following all results for the dispersion coefficien
are normalized bys f f

2 snn
2 ul1.

A. Asymptotic behavior

It is well documented in the literature, e.g., Ref.@2#, that
the contributions to the asymptotic transverse dispersion
efficients due to a steady spatially varying flow field are
the order of magnitude of the local dispersion coefficients
lowest-order perturbation theory. This is in contradiction
experimental results. Numerical simulations@38# have shown
that in d53 spatial dimensions there are macroscopic c
tributions resulting from higher-order terms of the perturb
tion series~32!. In d52 spatial dimensions, however, the
are no macroscopic contributions to the asymptotic tra
verse dispersion coefficients, which has been shown num
cally @39# as well as analytically without invoking perturba
tion theory for the general case of an incompressible ste
random field@40#. For a temporally fluctuating flow field the
situation is different.

We consider the asymptotic behavior of the contributio
to the dispersion coefficients for isotropic local dispersio
D115•••5Ddd[D as a function of the Kubo numberk. As
for a steady velocity field@36#, in the limit t→` the contri-
butions to the ensemble and effective dispersion coefficie
converge to the same asymptotic value:

lim
t→`

d (t)$Dii
eff%~ t !5 lim

t→`

d (t)$Dii
ens%~ t ![d (t)$Dii

`%~k!.

~49!

Because the contributions to the transverse dispersion c
ficients are equal for the considered scenario we define
the following d (t)$DL

`%(k)[d (t)$D11
` %(k) and d (t)$DT

`%(k)
[d (t)$Dii

`%(k), iÞ1.
Figures 1~a! and 1~b! illustrate the behavior of

d (t)$DL
`%(k) andd (t)$DT

`%(k) in d53 andd52 dimensions,
respectively, for fe51023 ande50. Analytical expressions
for d (t)$DL

`%(k) andd (t)$DT
`%(k) for e50 are given in Ap-

pendix B 1.
In the limit k→0, d (t)$DL

`%(k) andd (t)$DT
`%(k) tend to

zero because the fluctuations of the velocity field are too
to contribute remarkably to the mixing of the solute. Fro
there, the contributions to the dispersion coefficients incre
linearly with k for k&1,

d (t)$Di
`%~k!5ais f f

2 snn
2 luk1•••, ~50!

i 5L,T, where the slopeaL54A2p/15, aT5A2p/30 in d
53, andaL53A2p/16, aT5A2p/16 in d52, respectively.
The dots in Eq.~50! denote subleading contributions. Th
longitudinal coefficient tends to its maximum of abo
Ap/2s f f

2 snn
2 lu asymptotically ;k2(d21) in the limit k

→`, but is close to this limit already fork'10. The trans-
verse coefficient reaches its maximum fork'1 and is
'0.05s f f

2 snn
2 lu in d53 and'0.12s f f

2 snn
2 lu in d52. From
0-7



rs

rm

e
as
op

th
t

r

ou

he
h

f-
ter-

om
n
to
tive
bo
e
s in

en-
For
to
, of
t
of

But
re-
the

er-
t

he
l

f-

ri-
en-

ions
is
erse

be-
r
of

e-

fi-

if-

ge

bo
tion

gi

ts
.

M. DENTZ AND J. CARRERA PHYSICAL REVIEW E68, 036310 ~2003!
there,d (t)$DT
`% tends to a value of the order of the~micro-

scopic! local dispersion coefficient;k2(d21) for k→`.
Note that here the order of the limits is important, we fi
take the limitt→` and then we look at the behavior fork
→`. In the hypothetical casek→` and finite times, the
ensemble averaged quantities have only a restricted fo
meaning because fort/tu,k the flow field is quasisteady
but the fluctuations from realization to realization are larg

Note that the contributions to the longitudinal as well
to the transverse dispersion coefficients are of macrosc
order of magnitude, ind53 andd52. It is worth noticing
the sizable contribution of the temporal fluctuations to
transverse dispersion coefficients, despite the fact that
spatial mean velocityu(t) does not fluctuate laterally. Fo
k&1, i.e., t&tu , which is important for field applications
@5#, the transverse coefficients have values of ab
d (t)$DL

`%/8 andd (t)$DL
`%/3 for d53 andd52, respectively.

It is worth pointing out that the empirical ratio between t
transverse and longitudinal dispersion usually adopted by
drogeologists falls in this range@41#.

FIG. 1. Behavior of the second-order contributions to the lon
tudinal and transverse asymptotic dispersion coefficients~scaled by
uls f f

2 snn
2 ) as a function of the Kubo numberk (5t/tu) in ~a! d

53 and~b! d52 for an inverse Peclet numbere51023. Note that,
when t,tu , i.e., ut, l , d (t)$DT

`%51/8d (t)$DL
`% for d53 and

d (t)$DT
`%51/3d (t)$DL

`% for d52. The dashed lines in~a! and ~b!
describe the behavior ofd (t)$DL

`% andd (t)$DT
`% for e50 according

to Eqs. ~B1!–~B4!, respectively. For the longitudinal coefficien
the curves fore50 ande51023 are practically indistinguishable
The dotted lines are the respective approximations~50! for smallk.
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B. Time behavior

In the following, we consider the contributions to the e
fective and ensemble dispersion coefficients due to the in
action of spatial and temporal fluctuations of the rand
flow field for different scenarios. At first we investigate a
isotropic scenario with isotropic local dispersion in order
systematically study the differences between the effec
and ensemble dispersion coefficients for different Ku
numbers ind52 andd53 dimensions. Then we study th
behavior for various anisotropic local dispersion scenario
d52 andd53 dimensions. Note that fort/tu,max(k,1),
the dispersion coefficients, which are determined as
semble averages, have only a limited formal meaning.
t/tu,k, the flow field is quasisteady while the sample
sample fluctuations of the temporal stochastic process
course, are large. Fort/tu,1, the solute plume has not ye
been advectively transported over one correlation length
the medium and thus the medium looks homogeneous.
of course there are large fluctuations from realization to
alization of the spatial random process, which models
medium heterogeneities@36#.

1. Isotropic local dispersion

We consider here a scenario with isotropic local disp
sion, i.e.,D115•••5Ddd5D. The different inverse Pecle
numberse i and dispersion time scalestDi

reduce toe1

5•••5ed5D/(ul) and tD1
5•••5tDd

5 l 2/D, respec-
tively. Furthermore, for this scenario the contributions to t
transverse dispersion coefficients ind dimensions are equa
and we defined (t)$D11

eff%(t)[d (t)$DL
eff%(t) and d (t)$Dii

eff%(t)
[d (t)$DT

eff%(t), iÞ1, and for the ensemble dispersion coe
ficients accordingly.

Figures 2 and 3 illustrate the time evolution of the cont
butions to the longitudinal and transverse effective and
semble dispersion coefficients ford53 and d52, respec-
tively, and the corresponding approximations fore!1 and
t@tu , Appendix B 2 a. The dispersion time scale istD
5103tu , the inverse Peclet number is given bye51023.
The advection and dispersion time scalestu and tD are
clearly separated. The quality of the approximate express
is very good fort/t.k, where the stochastic approach
assumed to be valid. For large Kubo numbers, the transv
effective and ensemble coefficients, Figs. 3~a! and 3~b!, are
only poorly described by the approximate expressions,
cause the approximations disregard contributions of ordee.
For largek, however, the long-time values themselves are
the order ofe and so terms of this order of magnitude b
come important.

The contributions to the longitudinal dispersion coef
cients are shown in Figs. 2~a! and 2~b!. As for steady random
flow @36#, one observes a qualitatively and quantitatively d
ferent time behavior ford (t)$DL

eff% and d (t)$DL
ens% for finite

times.
In the long-time limit, the effective observables conver

to the ensemble values and assume their~constant!
asymptotic long-time values, which depend on the Ku
number as discussed in the preceding section. The interac

-

0-8
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EFFECTIVE DISPERSION IN TEMPORALLY . . . PHYSICAL REVIEW E68, 036310 ~2003!
of the time fluctuations and the sample to sample fluctuati
of the center of mass leads to a fast increase ofd (t)$DL

ens% to
its long-time value on the correlation time scale. The flu
tuations of the center of mass are an artificial, purely adv
tive, and nonphysical ensemble dispersion effect@36#, which
is visible also in the hypothetical situation of zero local d
persion, see the explicit expression forD50 given in Ap-
pendix B 2 b. For zero local dispersion, the effective disp
sion coefficients are zero by definition, because
dispersion coefficients in one realization are zero. Howe
in the presence of local dispersion as a transverse mi
mechanisms both quantities converge, Figs. 2 and 3, and
macroscale dispersion due to advective fluctuations beco
a real effect. The local scale transverse mixing here is
hanced by the time fluctuations of the velocity field, whi
leads to a behavior that is quantitatively different from t
one observed for steady random flow fields.

The contribution to the longitudinal ensemble dispers
coefficient approaches its asymptotic long-time value ex
nentially on the correlation time scalet, see Appendix B 2 b.
In a steady random field, the ensemble coefficient evol
algebraically on the advective time scale@36#. The influence
of the temporal variations of the flow field on the behavior

FIG. 2. Time behavior of the contributions to the longitudin
ensemble and effective dispersion coefficients in~a! d53 and~b!
d52 spatial dimensions fore51023, k50.1, k50.5, andk55.
The dash-dotted lines are the corresponding approximations
small e and t@tu .
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the effective coefficients is more subtle. The time fluctu
tions affect the evolution of the effective quantity by both t
interplay with the spatial heterogeneities and local disp
sion. In Figs. 2~a! and 2~b! we observe that fort>tD the
effective coefficients evolve slightly slower to the
asymptotic values ask increases. In fact, from the approx
mate expressions given in Appendix B 2, we identify a n
time scaletk[tDk25 l k

2/D, which measures the time for th
local dispersive spreading of the solute over the typical d
tancel k5ut ~‘‘Kubo distance’’! the solute is advected dur
ing one correlation timet. If the Kubo numberk@1, i.e.,
l k@ l 1, the effective coefficient evolves approximately
t2(d21)/2 for tD!t!tk , which is identical to the behavio
observed in steady random flow@36#. Apparently, the trans-
port times intD!t!tk are so small that the temporal fluc
tuations, which are characterized by the Kubo lengthl k
@ l 1, have no effect yet on the local spreading of the sol
and the transport behavior is similar to the one observed
a steady flow field.

For the long-time regimet@tk ~for k@1) the approxi-
mate expressions given in Appendix B 2 for the effecti
longitudinal dispersion coefficient lead to

or

FIG. 3. Time behavior of the contributions to the transve
ensemble and effective dispersion coefficients ind53 and d52
spatial dimensions fortD5103tu , e51023, k50.1, k55, andk
5100. The dash-dotted lines are the corresponding approximat
for small e and t@tu .
0-9
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M. DENTZ AND J. CARRERA PHYSICAL REVIEW E68, 036310 ~2003!
d (t)$DL
`%2d (t)$DL

eff%;t2d/2. ~51!

For k of the order of or smaller than 1, the asymptotic lon
time regime is reached according tot2d/2 already for t
@tD . Thus, the relevant time regimes and the exponents
which the effective quantity evolves asymptotically depe
on the Kubo numberk. This explains the slightly differen
asymptotic behavior observed in Figs. 2~a! and 2~b! for dif-
ferentk.

Figures 3~a! and 3~b! display the behavior of the contri
butions to the transverse dispersion coefficients ind53 and
d52, respectively. The behavior of the effective and e
semble coefficients is qualitatively and quantitatively diffe
ent from the one observed in steady random flows@36#. The
effective and ensemble quantities evolve to a macrosc
asymptotic value that depends on the Kubo numberk as
discussed in the preceding section. As observed for the
gitudinal ensemble coefficient, the transverse ensemble c
ficients approach their asymptotic~macroscopic! long-time
values exponentially on the correlation scalet, see Appendix
B 2 b.

For k@1, the effective coefficients approach their~mac-
roscopic! asymptotic long-time values fort@tk as

d (t)$DT
`%2d (t)$DT

eff%;t2d/2. ~52!

For k of the order of or smaller than 1, the long-time value
reached according to Eq.~52! already fort@tD , which ex-
plains that the effective coefficients in Figs. 3~a! and 3~b!
evolve earlier to their asymptotic value for decreasingk.
Note that the longitudinal and effective coefficients show
same asymptotic long-time behavior, which indicates that
same local spreading mechanisms activate the macrosc
advective spreading. For steady random flow the spatial c
trasts of the transverse velocity components are not suffic
to lead to macroscopic transverse dispersion coefficie
Temporal fluctuations, however, amplify these contrasts
as a consequence macroscopic transverse spreading is
vated by local dispersion mechanisms.

2. Anisotropic local dispersion and isotropic disorder correlatio

In this section, we study the time behavior of the disord
induced contributions to the effective and ensemble disp
sion coefficients for anisotropic local dispersion. The inve
Peclet numbers are given bye i5Dii /(ul), and the disper-
sion time scales bytDi

5 l 2/Dii for i 51, . . . ,d.
In a steady random field, the evolution of the longitudin

effective dispersion coefficient is determined by the tra
verse local dispersion time scales,tDi

, iÞ1 @36#. The trans-
verse spreading by local dispersion makes the solute sa
the heterogeneities in one medium and activates the ‘‘ad
tive’’ spreading due to the complicated streamline structu
which then leads to macrodispersion. These mechanisms
be observed for transport in a time-dependent velocity fi
as well.

a. Vanishing longitudinal local dispersion coefficient.Fig-
ures 4~a! and 4~b! illustrate the contributions to the longitu
dinal and transverse dispersion coefficients, respectively
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vanishing longitudinal local dispersion,e150 and e2
51022 in d52. The behavior ind53 is qualitatively the
same and not displayed here.

For large times, the effective longitudinal coefficien
evolve to their asymptotic long-time value and the behav
is similar to the one observed for isotropic local dispersion
the preceding section. As observed there, the long-time
havior depends on the value of the Kubo numberk. For
largek, the behavior of the longitudinal effective coefficie
in the intermediate regimetD2

!t!tk2
, with tk2

5tD2
k2, is

given by

d (t)$DL
`%2d (t)$DL

eff%;t2(d21)/2, ~53!

which is the same as for transport in a steady flow field@36#
and observed for isotropic local dispersion in the preced
section. In the long-time regimet@tk2

~for k@1) the effec-
tive longitudinal coefficient then evolves algebraica
;t2d/2 as in the isotropic case. Fork of the order of or
smaller than 1 the longitudinal coefficients approach th
asymptotic long-time values already fort@tD . Thus, fork
51 the effective coefficient reaches its asymptotic long-ti
value faster than fork510 as illustrated in Fig. 4~a!.

FIG. 4. Time behavior of the contributions to the~a! longitudi-
nal and~b! transverse ensemble and effective dispersion coefficie
in d52 dimensions,k51,10,̀ , e150, e251022.
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EFFECTIVE DISPERSION IN TEMPORALLY . . . PHYSICAL REVIEW E68, 036310 ~2003!
A similar time behavior is observed for the transver
effective coefficients, Fig. 4~b!. For k51, the evolution is
faster than fork510. In the asymptotic long-time regime
t@tk2

~for k@1) andt@tD ~for k of the order of or smaller
than 1!, respectively, the effective coefficient evolves like t
longitudinal coefficient;t2d/2.

b. Vanishing transverse local dispersion coefficients.Now
we consider a scenario characterized by a vanishing tr
verse local dispersion coefficient, i.e.,e250, and a finite
longitudinal local dispersion coefficient so thate151022,
which corresponds totD1

5102tu . For transport in a stead
random field, it has been shown@36# that in the absence o
transverse local dispersion the effective longitudinal disp
sion coefficient is of the order of magnitude of the loc
dispersion coefficient and the ensemble and effective co
cients do not converge in the limit of infinite times implyin
that longitudinal local dispersion only is not sufficient
activate advective spreading. The solute is spread out par
to the mean flow by longitudinal local dispersion and
samples the contrasts of the transverse velocity compon
This mechanism, however, is not sufficient to activate m
roscopic advective spreading.

For transport in a time-dependent random field the sit
tion is different. Due to the time variation of the flow field
spatial velocity contrasts are amplified and as soon as
solute is spread out sufficiently, i.e., over more than one l
gitudinal correlation lengthl 1, advective spreading due t
the complicated streamline structure is activated. This can
observed in Fig. 5~a!, where we plotted the contributions t
the longitudinal dispersion coefficients ford52 dimensions.
The behavior ford53 is qualitatively the same and is no
displayed here. In the~hypothetical! limit of infinite correla-
tion time, i.e., infinite Kubo number, the contributions due
spatial and temporal fluctuations~scaled bys f f

2 snn
2 ul1) are

formally identical to the contributions due to a steady ra
dom velocity field~scaled bys f f

2 ul1). Thus the effective and
ensemble coefficients fork5`, displayed in Figs. 5~a! and
5~b! illustrate the time behavior for transport in a stea
random velocity field. The longitudinal effective coefficie
for this case is of the order of the local dispersion coeffici
and does not cross over to the corresponding ensemble
ficient but approaches a microscopic asymptotic value of
order of the longitudinal local dispersion coefficient. Wi
finite Kubo number the behavior changes. Fork51, the ef-
fective coefficient evolves to a macroscopic value and c
verges eventually to the ensemble coefficient.

In the long-time regime fort@tk1
, with tk1

[tD1
k2, the

effective longitudinal coefficient approaches its asympto
value as

d (t)$D11
` %2d (t)$D11

eff%;t21/2. ~54!

The time scale defining the asymptotic long-time regime
given bytk1

, which increases quadratically withk, and thus,

in Fig. 5~a!, the effective longitudinal coefficient fork51
converges much faster to its asymptotic value than fok
510.
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The behavior of the contributions to the transverse disp
sion coefficients is displayed in Fig. 5~b!. For infinite Kubo
number, which corresponds to the conditions for a ste
random field, the effective and ensemble coefficients c
verge in the long-time limit to a common microscop
asymptotic value. For finitek, d (t)$D22

eff% andd (t)$D22
ens% con-

verge for t@tk1
to their k-dependent macroscopic valu

The effective coefficients approach the long-time limit alg
braically ;t2d/2.

c. Finite longitudinal and transverse local dispersion c
efficients. Figures 6~a! and 6~b! illustrate the time behavior
of the contributions to the longitudinal and transverse disp
sion coefficients, respectively, for varying values of the lo
gitudinal local dispersion coefficient and finite transverse
cal dispersion ind52.

For e150.1, the effective longitudinal coefficient, Fig
6~a!, evolves algebraically;t21/2 in the time regimetk1

!t!tD2
. This behavior has been already observed in F

5~a! for the casee2250, wheretD2
5`. In this time regime

longitudinal local dispersion, enhanced by the temporal fl
tuations of the velocity field, represents the only active lo
transverse spreading mechanism. Fort@tD2

, the asymptotic

value then is approached in leading order according tot2d/2.

FIG. 5. Time behavior of the contributions to the~a! longitudi-
nal and~b! transverse ensemble and effective dispersion coefficie
in d52 dimensions,k51,10,̀ , e250, e151022.
0-11
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M. DENTZ AND J. CARRERA PHYSICAL REVIEW E68, 036310 ~2003!
For e151022, we havetk1
5tD2

5104tu . The effective

coefficients reach their asymptotic values fort@tD2
accord-

ing to t2d.
For decreasinge1, i.e., increasingtk1

, the long-time be-
havior ‘‘saturates’’ and becomes independent of the long
dinal dispersion time scale. The effective coefficients evo
;t2d already fort@tD2

.
The transverse effective coefficients, Fig. 6~b!, show the

same long-time behavior and evolve asymptotically acco
ing to t2d. However, the relevant asymptotic time scale v
ies with the value of the Kubo numberk. Thus, the effective
transverse coefficients evolve on different time scales
wards their long-time values, see Fig. 6~b!. For tk1

<tD2
the

asymptotic regime is defined byt@tk1
, while for tk1

>tD2
, tD2

defines the relevant asymptotic time scale. Th
for the evolution of the transverse effective coefficients
ther local dispersion mechanisms together with the temp
fluctuations of the flow velocity is equally efficient to act
vate macroscopic advective spreading.

Figures 7~a! and 7~b! illustrate the time behavior of the
contributions to the longitudinal and transverse dispers
coefficients, respectively, ind53 for e151021, e251023,

FIG. 6. Time behavior of the contributions to the~a! longitudi-
nal and~b! transverse ensemble and effective dispersion coeffici
in d52 dimensions,k510, e251024, e151021, 1022, 1023,
1024.
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ande351024. The behavior is similar to the one observed
d52. Here, however, we distinguish three dispersion ti
scales. The longitudinal effective coefficient fork51, Fig.
7~a!, evolves already fort@tD1

to its asymptotic value,

faster than the coefficient fork510 ~i.e., tk1
5tD3

), which

evolves ontD2
. Apparently, the second, largest transver

dispersion time scaletD3
has no remarkable influence on th

time evolution of the effective coefficients. The local sprea
ing of the solute due to the local dispersion in the other t
directions enhanced by the temporal fluctuations of the fl
field is efficient enough to activate the macroscopic spre
ing due to the complicated streamline structure already
t>tD3

. This behavior is different from that observed
steady random flow, where the time behavior changes qu
titatively for t@tD3

@36#.

The transverse effective dispersion coefficients fork
51, Fig. 7~b!, increase monotonously towards th
asymptotic value, which they approach fort@tD1

. The
transverse dispersion scales have no remarkable effect o
asymptotic behavior. Fork510 ~i.e., tk1

5tD3
) the behavior

of the effective coefficients is nonmonotonic fort/tu<k.
However, the behavior in this time regime has only a form
meaning because the stochastic approach cannot be ass

ts
FIG. 7. Time behavior of the contributions to the~a! longitudi-

nal and~b! transverse ensemble and effective dispersion coefficie
in d53 dimensions fore151022, e251023, ande351024.
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EFFECTIVE DISPERSION IN TEMPORALLY . . . PHYSICAL REVIEW E68, 036310 ~2003!
to be valid for such times due to large sample to sam
fluctuations of the temporal stochastic process. Fort/tu.k
the transverse effective coefficients cross over towards t
macroscopic asymptotic values, which they approach fot
@tD2

. Again, the much larger time scalestD3
andtk1

play
only a minor role for the time evolution of the effectiv
coefficients. Longitudinal local dispersion is effective on
due to the interplay with the time fluctuations of the veloc
field.

IV. SUMMARY

We investigated the effective transport behavior of a p
sive solute evolving from a point-like injection in the incom
pressible flow through a heterogeneous porous medium
ject to temporal fluctuations of the boundary conditions
the flow equation. We used a stochastic approach to ana
the interplay of local scale spatial heterogeneities, local
persion, and temporal fluctuations of the flow field and
effect on the large scale transport behavior. In this appro
the medium heterogeneities are represented by a spatial
dom process while the fluctuations of the boundary con
tions are modeled as a temporal random field with fin
correlation time. The incompressible velocity field for flo
in a heterogeneous porous medium is given by the Da
equation, which is solved by perturbation theory in the flu
tuations of the random fields. The obtained perturbation
lution consists of three contributions:~1! A spatially con-
stant, time-dependent part,~2! a temporally constant
spatially fluctuating part, and~3! a space- and time
dependent contribution. We focused on the transport rele
contributions due to the third term whereby we took in
account only temporal variations of the magnitude of
spatial mean velocity. The effect of the second term on
large scale transport behavior is already well investigate
the stochastic perturbative framework. It turned out that
first, only temporally varying contribution has no influen
on the effective spreading of the solute.

In the stochastic approach, the observables are define
averages over all typical realizations of the underlying r
dom fields and have to be carefully chosen in order to r
resent the actual spreading in a typical realization of the
erogeneous medium. In analogy to transport in a ste
random flow field, we defined the effective dispersion co
ficient Di j

eff ~18!, which characterizes the spreading in a ty
cal disorder realization. The conceptually different ensem
dispersion coefficientDi j

ens ~19! quantifies the artificial
spreading due to the sample to sample fluctuations of
center of mass velocity. Both dispersion coefficients c
verge on sufficiently large scales~set by the local disper
sion!, where the advective macroscale spreading becom
real effect as a consequence of transverse spreading d
local dispersion and the interaction with temporal fluctu
tions of the flow field.

Other definitions for the large scale dispersion coe
cients, which are derived from the time ensemble avera
concentration distribution~e.g., Refs. @5,10#! have been
shown to be inappropriate for the characterization of so
spreading in a typical heterogeneity realization: We stud
03631
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the exactly solvable case of transport in a time-depend
flow through a homogeneous medium. There, the concen
tion distribution in one realization is given by a Gaussi
function characterized by the~constant! local dispersion and
the time-dependent center of mass velocity, which is ide
cal to the flow velocity. For a Gaussian distributed rando
flow field, the ensemble averaged concentration was de
mined explicitly. The ‘‘macrodispersion’’ coefficients derive
from this averaged concentration are given in terms of
temporal correlation of the flow field and are for all time
quantitatively different from the local dispersion coefficien
which measure the spreading in a typical realization. Th
‘‘macrodispersion’’ coefficients are not self-averaging and
such are not representative of the spreading in a typical
order realization. Thus, in order to study the effective tra
port behavior in transient flow through a heterogeneous
dium we focused on the effective and ensemble dispers
coefficients.

The complete time evolution of the large scale dispers
coefficients was investigated by numerical and analyti
evaluation of the resulting second-order perturbation the
expressions. It was found that the transport behavior i
time-dependent heterogeneous flow field is qualitativ
similar, quantitatively different, though, from the one o
served in steady random flow. The stochastic perturba
analysis of transport in a steady flow field yields transve
asymptotic dispersion coefficients of the order of the~micro-
scopic! local dispersion coefficient and is in contradiction
experimental findings. In a temporally fluctuating heterog
neous flow field, however, the contributions to the longitu
nal and transverse effective dispersion coefficients evolve
sufficiently large scales to~constant! macroscopic long-time
values. Apparently, the interaction between local scale
persion and time fluctuations of the flow velocity enhan
the mixing of the solute and so activate advective spread
due to the complicated streamline structure.

In the long-time limit t→` the ensemble and effectiv
dispersion coefficients converge to the same asymptotic
ues. Both the contributions to the longitudinal as well as
the transverse asymptotic dispersion coefficients are of m
roscopic order of magnitude, which is consistent with fie
observations. The longitudinal asymptotic values incre
monotonically with increasing Kubo numberk5t/tu ,
which measures the correlation time scale in units of
advection time scale. In the~hypothetical! limit k→` it
tends to a macroscopic asymptotic value;k2(d21). The
transverse asymptotic contributions assume a maximum
k'1, and decrease in the hypothetical case ofk→` accord-
ing to ;k2(d21) to a value of the order of the local dispe
sion coefficient. Fork around 1, the ratio between the tran
verse and longitudinal contributions is of the order
magnitude of the ratio usually adopted by hydrologists.

The longitudinal and transverse ensemble quanti
evolve on the correlation time scale exponentially to th
asymptotic value. The effective coefficients evolve on tim
scales set by the local dispersion coefficients and the K
numberk5t/tu . For large Kubo numbers, the longitudin
effective coefficients evolve in an intermediate time regim
tD!t!tk as;t2(d21)/2 like in a steady random flow. The
0-13
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M. DENTZ AND J. CARRERA PHYSICAL REVIEW E68, 036310 ~2003!
time scaletk5 l k
2/D, with l k5ut, characterizes the time fo

the local dispersive spreading of the solute over the dista
which the solute is transported advectively during one co
lation time. As such it characterizes the time after which
interplay between temporal fluctuations and local dispers
becomes effective as an additional transverse local sprea
mechanism. Then, fort@tk due to the influence of time
fluctuations of the flow velocity, the effective coefficien
evolve faster than for steady random flow according
;t2d/2. The transverse effective coefficients evolve fort
@tk in the same way. The same long-time behavior is
served for transport with zero local longitudinal dispersio

For vanishing transverse local dispersion, however,
behavior is different. In this case the effective longitudin
coefficient approaches its macroscopic asymptotic value
gebraically;t21/2 for t@tk1

, with tk1
5 l k

2/D1. An interme-

diate time regime fork@1 is not observable. In a stead
random flow the effective longitudinal coefficient evolves
a macroscopic value solely due to the transverse mixing
duced by local transverse dispersion. Thus, for zero tra
verse local dispersion it remains of the order of the lo
dispersion coefficient. By longitudinal local dispersion, t
solute experiences the contrasts of the transverse velo
components along the 1-direction, which, however, is
sufficient to activate advective spreading in steady rand
flows. Temporal fluctuations enhance these velocity contr
and lead to the observed macroscale advective spreadin

The results presented in this paper are inherently per
bative, i.e., strictly valid only for moderate fluctuations of t
medium properties and the boundary conditions of the fl
equations. It is not clear up to which variances of the rand
fields this approach is valid. The application of nonpertur
tive solution methods and the comparison to numerical sim
lations can give further insights into this important questio
In fact, the comparison to numerical Monte Carlo simu
tions @42# indicates that the presented results are still va
for an increasing variance of the random flow field. Wo
along this line is in progress.

The local dispersion tensor has been set constant in
study. In general, however, it is also dependent on the loc
fluctuating flow velocity@43#. Moreover, in field experiments
it is observed, e.g., Refs.@4–6#, that not only the magnitude
but also the direction of the spatial mean flow velocityu(t)
5u(x,t) varies with time. The method used in this pap
allows for a systematic analysis of these cases as well a
the investigation of the influence of extended initial con
tions on the macroscale transport behavior, which is imp
tant for the comparison to field scale experiments. Furth
more, the consequences of these results for remedia
techniques, which rely on the mixing of injected reacta
with contaminated ground water@44#, have to be explored.
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APPENDIX A: LINEARIZED SOLUTION
OF THE DARCY EQUATION

The following perturbative solution of the Darcy equatio
follows the derivation given in Refs.@2,5#. The Darcy equa-
tion represents an effective flow law on a mesoscopic len
scale and relates the flow velocityu(x,t) in the porous me-
dium to the hydraulic gradient“h(x,t), whereh(x,t) de-
notes the hydraulic head, e.g., Ref.@24#:

u~x,t !52exp@ f ~x!#“h~x,t ! ~A1!

with f (x) being the log-hydraulic conductivity. In the sto
chastic framework,f (x) is assumed to be a stationary Gaus
ian distributed spatial random function characterized by
mean value f (x)5 f̄ and its autocorrelation function
f 8(x) f 8(x8)5Cf f(x2x8), where f 8(x) denotes the fluctua
tions about the mean value,f (x)5 f̄ 2 f 8(x). The mean of
f 8(x) vanishes by definition. Neglecting compressibility
fluid and solid matrix, mass conservation implies“•u(x,t)
50, which can be rewritten using Eq.~A1! as an equation
for the hydraulic head:

Dh~x,t !2“ f 8~x!•“h~x,t !50. ~A2!

We assume that the boundary conditions for the hydra
head lead to a temporally fluctuating space independent
draulic gradient in the absence of spatial fluctuations of
hydraulic conductivity, i.e.,f 8(x)[0. The realization of
such boundary conditions is outlined in Ref.@8#. The head
solution for the homogeneous flow problem,h0(x,t), then is
a linear function of the coordinates so that the hydraulic g
dient

J~ t ![“h0~x,t !. ~A3!

We separate the solutionh(x,t) into h0(x,t) and spatial
random fluctuations about it, which vanish in the ca
f 8(x)[0,

h~x,t !5h0~x,t !2h8~x,t !. ~A4!

By inserting this expression into Eq.~A2!, we obtain for
h8(x),

Dh8~x,t !2“ f 8~x!•“h8~x,t !5J~ t !•“ f 8~x!, ~A5!

whereh8(x,t) vanishes on the boundaries by definition. T
integral equation equivalent to Eq.~A5! reads

h8~x,t !5E
V

ddx8w0~x,x8!@“8 f 8~x8!•“8h8~x8,t !

1J~ t !•“8 f 8~x8!#, ~A6!

whereV denotes the flow domain,“8 denotes the gradien
with respect tox8. The Green functionw0(x,x8) solves

Dw0~x,x8!5d~x2x8!, ~A7!

wherew0(x,x8) vanishes on the boundaries. We want to d
termine the flow field far away from the boundaries. Thu
0-14
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EFFECTIVE DISPERSION IN TEMPORALLY . . . PHYSICAL REVIEW E68, 036310 ~2003!
we now consider the limiting case of an infinite flow doma
For convenience we perform a spatial Fourier transform. T
spatial Fourier transform of the integral equation~A6! is
given by

h̃8~k,t !5
ik•J~ t !

k2
f̃ 8~k!2

i

k2Ek8
~k2k8!•k8 f̃ 8~k8!h̃8~k8,t !,

~A8!

because the Green functionw0(x,x8) in Fourier space read
~e.g., Ref.@45#!

w̃0~k,k8!5
1

k2
~2p!dd~k1k8!. ~A9!

Iterating Eq. ~A8! one obtains a perturbation series f
h̃8(k,t). We truncate after the first-order term inf̃ 8(k), i.e.,
we take into account only the first term of the right side
Eq. ~A8!. We then insert this expression into Eq.~A1!. We
expand the resulting expression consistently up to first o
in f̃ 8(k) and obtain for the flow velocity:

ui~x,t !5KgJi~ t !2KgE
k
exp~2 ik•x!

3S Ji~ t !2
kik•J~ t !

k2 D f̃ 8~k!1•••, ~A10!

where Kg[exp(f̄). Starting from this expression, we con
sider the temporal fluctuations of spatial mean hydraulic g
dientJ(t). The time stochastic process is assumed to be
tionary so that the mean gradient̂J(t)&[J is time
independent. We consider here transport situations where
mean hydraulic gradient is parallel to the mean flow veloc
i.e., mean flow parallel to the bedding, e.g., Ref.@2#. Thus,
without loss of generality, we assumeJ to be aligned with
the one direction of the coordinate system. The results
rived here can be generalized straightforwardly to the cas
complete anisotropy. We now divideJ(t) into its mean value
and fluctuations about it,

Ji~ t !5J„d i12n i~ t !…, ~A11!

i 51, . . . ,d, where then i(t) denotes the normalized fluctua
tions about̂ Ji(t)&. Inserting Eq.~A11! into Eq. ~A10! we
obtain contributions~6!–~8! of decomposition~5! of the flow
field in terms of the perturbative mean velocityu[KgJ. Us-
ing a flow factorg @2# u can be written in the form of the
experimentally accessible~nonperturbative! mean velocity
uexp, u5uexpg21. The flow factor is defined byg5K11/Kg
with K11 the experimentally given 11-coefficient of the ma
roscopic hydraulic conductivity.~If the flux is prescribed at
the inflow boundary the flow factor drops since the me
flow is imposed by the boundary condition. For the pert
bative solution of this boundary value problem, one cons
ers an equation for the vector potential of the incompress
flow, A(x,t) with u(x,t)5“3A(x,t), instead of the scala
potentialh(x,t), see Ref.@46#.!
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APPENDIX B: SOLUTIONS

1. Asymptotic behavior

Here we present analytical solutions for the asympto
behavior of the longitudinal and transverse macrodispers
coefficients as a function of the Kubo numberk[t/tu for
isotropic spatial disorder and an isotropic local dispers
tensor. For vanishing local dispersion and isotropic disor
correlation, we obtain for the asymptotic longitudinal a
transverse dispersion coefficients as a function ofk in d
53 dimensions:

d (t)$DL
`%~k!5s f f

2 snn
2 ulAp

2
k24H S k21

3

4D
3 lnS 2k1A11k2

k1A11k2 D 1A11k2S k31
3

2
k D J ,

~B1!

d (t)$DT
`%~k!5s f f

2 snn
2 ul

Ap

16k4 H ~2A2k213A2!

3 lnS k1A11k2

2k1A11k2D 26A2kA11k2J .

~B2!

The maximum ofd (t)$DT
`%(k) is reached fork'1, i.e., at

correlation times of the order of the advection time scaletu .
In d52 dimensions we obtain

d (t)$DL
`%~k!5s f f

2 snn
2 ulAp

2
k23H ~11k2!3/22

3

2
k221J ,

~B3!

d (t)$DT
`%~k!5s f f

2 snn
2 ulAp

2
k23H 1

2
k22A11k211J .

~B4!

The maximum of d (t)$DT
`%(k) in d52 is given by

d (t)$DT
`%(kmax)5

1
6Ap/6s f f

2 snn
2 ul, and reached atkmax5A3.

2. Time behavior

The time behavior of the ensemble and effective disp
sion coefficients is determined by the numerical evaluat
of the auxiliary functions~41!, which in d53 dimensions
can be simplified to
0-15
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M11~ t,A!5snn
2 s f f

2
A2l 2l 3

4l 1
2 E

0

t/tu
dt8E

0

1

dxB1~ t8,A!3/2x2

3~12x2!expS 2
~xt8!2

4B1~ t8,A!
2

t82

2k2D
3$3/2@B1~ t8,A!1DB2~ t8,A!x2#21/2@B1~ t8,A!

1DB3~ t8,A!x2#25/21@B1~ t8,A!

1DB2~ t8,A!x2#25/2@B1~ t8,A!

1DB3~ t8,A!x2#21/21@B1~ t8,A!

1DB2~ t8,A!x2#23/2@B1~ t8,A!

1DB3~ t8,A!x2#23/2%, ~B5!

M22~ t,A!5snn
2 s f f

2
A2l 2l 3

8l 1
2 E

0

t/tu
dt8E

0

1

dx~12x2!

3expS 2
~xt8!2

4B1~ t8,A!
2

t82

2k2D S B1~ t8,A!1/2x2

2
1

2
B1~ t8,A!21/2t82x4D @B1~ t8,A!

1DB2~ t8,A!x2#23/2@B1~ t8,A!

1DB3~ t8,A!x2#21/2, ~B6!

M33~ t,A!5snn
2 s f f

2
A2l 2l 3

8l 1
2 E

0

t/tu
dt8E

0

1

dx~12x2!

3expS 2
~xt8!2

4B1~ t8,A!
2

t82

2k2D S B1~ t8,A!1/2x2

2
1

2
B1~ t8,A!21/2t82x4D @B1~ t8,A!

1DB3~ t8,A!x2#23/2@B1~ t8,A!

1DB2~ t8,A!x2#21/2, ~B7!

where we defined for compactness of notation:

Bi~ t,A!5
1

2
~Ai62e i t !, ~B8!

DBj~ t,A!5 l j
2/ l 1

2Bj~ t,A!2B1~ t,A!, j Þ1. ~B9!

In d52 dimensions, we obtain
03631
Mii ~ t,A!5snn
2 s f f

2 l 2

l 1pE0

t/tu
dt8E

0

1

dxB~x,t8,A!21

3expS 2
t82

2k2D F12
xt8

B~x,t8,A!1/2

3DS xt8

2AB~x,t8,A!
D Ghi~x!, ~B10!

where the functionD(x) denotes Dawson’s integral as d
fined in Ref.@47#. We defined for compactness of notation

hi~x!5H ~12x2!3/2, i 51

x2~12x2!1/2, i 52
~B11!

and

B~x,t,A!5
1

2
@~A162e1t2!x21 l 2

2/ l 1
2~A262e2t2!~12x2!#.

~B12!

a. Approximation for small inverse Peclet numbers and tštu

For isotropic spatial disorder,l 15•••5 l d , the auxiliary
functions ~41! can be evaluated explicitly fore l!1,
l 51,•••,d, and t@tu . We consider a situation with isotro
pic disorder correlationl 15•••5 l d and anisotropic local
dispersion withD115DL andDii 5DT , iÞ1. Therefore we
define ford52 andd53 dimensions,M1

6[ML
6 , andMi

6

[MT
6 for iÞ1 andA1[AL , Ai[AT for iÞ1. The approxi-

mate behavior is obtained by settinge l50 in Eq. ~41! and
extending the upper bound of the time integration to infin
@36#. This yields ford53 dimensions:

ML
6~ t,A!5Ap

2
snn

2 s f f
2 F k

AAL1k2 S 1

AT
1

5

2~DA1k2!

1
3AT

2~DA1k2!2D
2

k

~DA1k2!3/2
arcsinhSA~DA1k2!

AT
D

3S 3AT

2~DA1k2!
12D G , ~B13!
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MT
6~ t,A!

5Ap

2
snn

2 s f f
2 F k

~DA1k2!3/2
arcsinhSA~DA1k2!

AT
D

3S 3AT

4~DA1k2!
1

1

2D 2
k

AAL1k2 S 3

4~DA1k2!

1
3AT

4~DA1k2!2D G . ~B14!

In d52 dimensions, we obtain

ML
6~ t,A!5Ap

2
snn

2 s f f
2 F 1

AAT

k~AL1k2!3/2

~DA1k2!2

2
k

DA1k2 S AT

DA1k2
1

3

2D G , ~B15!

MT
6~ t,A!5Ap

2
snn

2 s f f
2 F k

DA1k2 S AT

DA1k2
1

1

2D
2

kAAT~AL1k2!1/2

~DA1k2!2 G , ~B16!

where for compactness of notation we definedDA[AL
2AT . For isotropic local dispersionDA[0. Note that the
Mii

6 have no explicit time dependence but vary only ifA is
time-dependent.

b. Closed expressions in dÄ2 spatial dimensions for the limiting
case of zero local dispersion

For the contributions to the longitudinal and transve
dispersion coefficients we obtain explicit expressions
d52 spatial dimensions in the limiting case of vanishi
local dispersionD50 and isotropic disorder correlatio
l 15•••5 l d5 l . We define here the dimensionless tim
t̂[t/tu . For the time behavior ofd (t)$D11

ens(t)% we obtain
from theMii

6 , Eq. ~48! according to Eqs.~43! and ~44!:
s

03631
e
n

d (t)$D11
ens~ t !%5snn

2 s f f
2 ulFAp

2

erfS t

A2t
A11k2D

A11k2

3$k2112k231k25%2Ap

2
erfS t

A2t
D

3H 3

2
k211k23J 1expS 2

t2

2t2
~11k2!D

3$ t̂211 t̂21k222 t̂23%1expS 2
t2

2t2D
3H t̂232 t̂21k222

3

2
t̂21J G . ~B17!

For the time behavior ofd (t)$D22
ens(t)% we obtain

d (t)$D22
ens~ t !%5snn

2 s f f
2 ulF 2Ap

2

erfS t

A2t
A11k2D

A11k2

3$k231k25%1Ap

2
erfS t

A2t
D

3H 1

2
k211k23J 1expS 2

t2

2t2
~11k2!D

3$ t̂232 t̂21k22%1expS 2
t2

2t2D
3H 1

2
t̂211 t̂21k222 t̂23J G . ~B18!
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